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A formula is presented which can be regarded as the analytic basis for 
irreducible diagram expansions. It expresses the off-diagonal elements of the 
inverse of a matrix of operators by the off-diagonal elements and by diagonal 
elements of various inverses of the original operator. The formula can be 
obtained by purely analytic means without reference to statistical considera- 
tions. No infinite processes are involved if one deals with a finite matrix of 
operators. 

KEY W O R D S :  Kraichnan's model equation; stochastic systems; irreducible 
diagrams. 

In  an internal  report  (1) writ ten a few years ago, some equat ions occurring in 
a paper  by Kra i chnan  (2) were rederived. Basic is one algebraic relat ion which 
possesses an essential proper ty  of  irreducible diagrams. This note  is writ ten to 
emphasize its significance. Recently, the derivat ion of  diagram expansions 

has been reexamined by Lee. (3) In  his abstract, he expresses the hope that  his 

paper  will give some insight into the analytic structure of irreducible diagram 
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expansions. In my opinion, this insight has already been provided by the 
relation mentioned above. The formula refers to operators arising from larger 
operators by partitioning. It is just one step away from irreducible diagram 
expansions as they usually appear; yet it has been derived without reference 
to the statistical nature of the problem and without the use of perturbations 
or series expansions. If the operator in question is partitioned into a finite 
number of suboperators, then the relation contains only a finite number of 
terms. The mathematical nature of such expansions can therefore be explored 
without reference to the physical context. This point which [ regard as 
conceptually important cannot be recognized in Lee's treatment, for he 
uses mathematical and physical arguments in combination. 

Diagrams are used to symbolize a sequence of operations by means of 
vertices to which a subscript is assigned and lines connecting the vertices. 
The subscripts serve to identify the operators involved. In irreducible 
diagrams, no repetition of subscripts is admitted. This is the property which 
is reproduced in the basic formula mentioned above. Whether this formula 
and its derivation reveal the analytic structure of diagram expansions is a 
moot question; it is, of course, conceivable that the derivation can be simpli- 
fied, so that the logical lines are displayed more clearly. The injection of 
physical arguments may help the intuitive side, but if it is used as a substitute 
for a mathematical argument, then it is likely to break the line of thought. 
The present note defines the notation and shows the basic formula; moreover, 
it applies this formula to some simple examples where the operators are 
matrices, in order to illustrate the meaning of different terms. For the 
derivation and the physical application, reference is made to the original 
report. 

Let B be an operator and ~ and f elements of some function space. 
Usually an element of this function space consists of M functions defined 
in the x,t space, where x is the local vector and t the time. The number M 
is very large; in the applications, it is taken to be infinite; in this note, we 
take M to be finite. It is natural to consider the individual functions as 
components of the "vectors" ~b and f.  One might also say that one has 
carried out a partitioning of the elements ~b and f of the function space. This 
partitioning induces a partitioning in the matrix B. In practice B appears 
directly in the partitioned form; that is, B appears as a matrix of operators. 
Then one has 

B = 

t 

. . .  ', 
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One might also combine the components of r and f i n  pairs or triplets and 
partition the original matrix B accordingly. A partitioning in pairs is indi- 
cated by the dashed lines. One of the operators obtained by the partitioning 
then consists of four operators of the original form. One wants to solve the 
problem 

B~b = f  

In Kraichnan's work, the diagonal operators are usually differential operators, 
for instance, they may be given by O/et § V 2, the off-diagonal operators may 
also be differential operators, but usually only with respect to the space 
coordinates, in simpler cases, the operation performed by the off-diagonal 
elements is multiplication of the function to which the operator is applied 
by a given function. Usually the statistical nature of the problem is intro- 
duced by the off-diagonal elements. However, statistically considerations 
play a role only after the matrix inversion has been carried out; they are of 
no concern in the present note. The operators (or matrices of operators) which 
arise by the partitioning are numbered in the same manner as one numbers 
matrix elements. Thus the four operators which are combined in the coarser 
partitioning by the dashed lines as shown above, taken together would be 
denoted by Bz,1, B1,2, etc., and a corresponding notation would be applied 
to r and f .  The diagonal elements of the partitioned matrix B are given by 
a square matrix of operators. From now on, we consider B as given and 
assume that a certain partitioning has been carried out which divides r and 
f i n t o  M and B into M s elements. 

Let B -1 = C and let C be partitioned in the same manner as B. The 
relation which we shall quote connects the off-diagonal elements of B with 
the off-diagonal elements of C. For this purpose, the diagonal elements of C 
and of a number of other auxiliary inverses of B are needed. The introduction 
of these auxiliary inverses is the device by which one can establish the 
crucial relation for cases where M is finite. 

In defining these inverses, we replace systematically rows and the corre- 
sponding columns of B by zeros. This is accomplished in the following 
manner: Let E be the identity operator belonging to B and let E~ be the 

8zz/8/3-z 
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identity operator belonging to the ~th diagonal operator of the partitioned 
operator B. Let D ~ be an operator partitioned in the same manner as B 
and C; D ~ is defined by 

D~I~ ~ 0, k I =/= a or k2 :/= ~; and D~,~ = E~ 

One has, of  course, D ~ D  ~ = D~; D ~ D  ~ = 0, o~ =/= fi; D ~ ( E - -  D ~) = 0. A 

matrix which arises f rom B by replacing rows and columns with subscripts 
al ... a~,  n < M by zero, is then given by 

B ~ ' ~ ' ' ' ~ "  = ( E  - -  D ~ )  . . .  ( E  - -  D ~'~) B ( E  - -  D~") . . .  ( E  - -  D ~ )  

The sequence of the operators with which B is premultiplied and postmulti- 
plied is unessential. We define an inverse C ~r''~- of B ~ ..... as a matrix of 
operators which has zeros in the rows and columns with subscripts az ... a~ 
and which satisfies 

C ~ ...... B ~ . . . . . .  (E - -  D~) ' ' '  (E - -  D %) 

To obtain C ~ ..... , one would form the inverse of B ~1 ..... after the rows and 
columns with subscripts aa -'- a~ have been removed and then place the 
resulting elements of  C into the position in which the elements of  B appeared 
originally. With this definition, one has the following relation: 

C~.~ - -  C~B~C~ @ ~'  C~c~ekl B~kl CI~z~IB~I~C~ B 
/ct=l-..M 

- -  ~--'0~0~ "UOi~2vw'v~2~$~LD~2~l~/~l/~ 1 ~ 1 ~ ' . ~  --~ """  
k%,k2=1.-.M 

(I) 
where the prime on the first sum indicates that  all subscripts ~, fi, and k z are 
different and the double prime on the second sum indicates that  all subscripts 
~, fi, k l ,  and k2 are different. In this equation the subscripts follow the rule of  
matrix multiplication: the first subscript of the first operator agrees with the 
first subscript of  C on the left, the last subscript of  the last operator on the 
right agrees with the second subscript of C on the left. Superscripted diagonal 
operators C alternate with off-diagonal operator of B. The rule by which 
the superscripts of  the operators C are chosen is best recognized if one reads 
the sums f rom the right to left: Each new C has one additional superscript 
which agrees with the second subscript of B at the right of  the operator C. 
The rightmost operator C has no superscript. The formula terminates with the 
sum in which the number of superscripts of  the first operator matrix C is 
M --  1. The structure of  irreducible diagrams can be recognized in the fact 
that  no subscripts are repeated. Equation (1) is, with some changes of  
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notation, the formula on top of p. 13 of  Ref. 1. I t  is obvious that this formula 
does not give the inverse of  B, for it contains the diagonal terms of  the 
inverse C ~z'''~-. 

We consider a few simple examples. The matrix 

has the inverse 

C--- a l_!!  
\ 2 ' 2 /  

Considering the partitioning as indicated by the dashed lines, one has 

B1,2 = (1), B2,1 = (3), C1,1 : (--2),  C2.2 = (--�89 

In (1) only the first term on the right will be present. One has Cx.~ = 1, 
C2.1 = ~, and, according to (1), 

q , ~  = - c ~ . ~ , , . ~ c ~ . ~  = ( - 1 ) ( 2 ) ( - � 8 9  = (1)  

C1,1 = - -C1,2a2: ,1C1,1  = - - ~ - .  3 "  - - 2  = 2 ~ 

In a slight generalization, we consider a larger matrix B, partitioned into four 
matrices. The diagonal matrices must be square: 

(B1,1 B1,2~ 
B = \B2,1 B2,2! 

Then 

( ) ( ) (o C ~ BZ = 0 0 CI __ 0 0 B 2 = 1.2 C ~ =  .z 
0 B 2 , 2  ' 0 B Z ~  ' ' 0 

Then one obtains 

1 2  - 1  - -  Bz,IBI,~C2,2 , Cz 1 -2 
�9 = , = --B2,2B2,1Cl,1 

As a check, we form M = B �9 C; M ought to be the unit matrix 

(B1,1 B1 ~ [ C l  l --B~IBz,2C2,2~ 
M = \B2,1 BeI2j~__B~Be.~C1.1 C2,~ / 
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Then 

i l , o  = --BI,IB~,,1BI,2C2,2 -~- B1,2C2, 2 = O, m 2 , 1  = 0 

The first diagonal terms gives 

/ 1 , 1  = (91 ,1  - -  B1,2B~B2,1) C1,1 

MI,~ is not automatically E~, but it gives a relation from which C 1 can be 
computed, 

G , I  = (B~.~ - -  B z , 2 B ~ B 2 . 0  -~ 

One might consider larger matrices and apply different partitionings to them. 
This would illustrate how the subscripts in the sums occurring in (1) must 
be chosen. For  instance, for M = 3, only the first sum will appear and with 
a and/3 fixed, kl can assume only one value. 

We add a few remarks about the further developments carried out in 
Ref. 1. The statistical element is brought in by the observation that, because 
of the nature of collective coordinates in Kraichnan's formulation, the 
individual components of the vector ~b are essentially equivalent, and that 
in the limit M ~ 0% it does not matter if a finite number of rows and columns 
in the partitioned matrix B are omitted. In the limit M--+ 0% the diagonal 
operators C~ ~ ~ ~ are the same and they are statistically sharp. It is therefore 
possible to replace them by one operator F. The formula which arises in this 
manner has been quoted by Lee. In the steps carried out so far, it is simpler 
to think in terms of an o p e r a t o r / '  rather than of a Green's function G which 
serves to represent the operator. The transition to the Green's function is 
carried out separately. The equations so obtained are taken as the starting 
point for the derivation of some formulas originally given by Kraichnan. 
This includes the application of an irreducible diagram expansion to Burger's 
equation. The special feature which occurs here lies in the nonlinear term of 
Burger's equation. The operator is split into a linear part and a remaining 
term which is treated as if it were an inhomogeneous term. One must, 
however, take into account that the randomness of the linear operator and 
of the driving term are related to each other. The splitting of the nonlinear 
operator is not free of arbitrariness, none of the existing possibilities is 
inherently preferable, and to each of the resulting equations, Kraichnan's 
justification for the truncation of the system can be applied. Unfortunately, 
the resulting equations, all presumably valid in the limit M - - ,  0% are not 
the same, although all of them refer to the same model system. One is 
therefore confronted with a strange situation: While the method of intro- 
ducing irreducible diagrams shown in Ref. 1 removes certain doubts which 
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might exist if one applies a more intuitive approach, it also brings the 
technique into sharper focus and gives rise to new questions. 

The fact that the matrix B can be partitioned in different ways might 
be used to introduce model equations which are closer to the physical reality. 
One might apply the randomizing factor q~ of the type used by Kraichnan for 
each element of  a coarser partitioning. Of  course, the operator _P would then 
be more complicated and the labor involved in obtaining actual solutions 
would be much larger. 
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